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Let E be a Banach space over C and let the densely defined closed linear operator
A: D(A) … EQ E be discretely approximated by the sequence ((An, D(An)))n ¥N of
operators An where each An is densely defined in the Banach space Fn. Let sa(A) be
the approximate point spectrum of A and let se(An) denote the e-pseudospectrum of
An. Generalizing our own result, we show that sa(A) … lim inf se(An)=1n ¥N

4k \ n se(Ak) holds for every e > 0. We deduce that then for every compact set
K … C limn dist(sa(A) 5K, sa(An))=0 provided there exists M> 0 such that
||(l−An)−1|| [M dist(l, s(An))−1 holds for every n and every l in the resolvent set
r(An) of An. We finally treat the problem under which conditions sa(A) can be
approximated from below. More precisely we investigate the problem: Under which
assumptions does 4 e > 0 4n ¥N 1k \ n se, a(Ak) … sa(A) hold where se, a(A) denotes the
e-approximate pseudospectrum? © 2001 Elsevier Science
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1. INTRODUCTION

Let E be a Banach space and let A: D(A) … EQ E be a closed densely
defined linear operator. By r(A) we denote its resolvent set, by s(A) its
spectrum, by sp(A) the set of its eigenvalues, and finally by sa(A) the
approximate point spectrum

sa(A)={l ¥ s(A) : inf{||(l−A) x|| : ||x||=1, x ¥D(A)}=0}.

Let E0 be a core of A, i.e. a linear subspace of D(A) such that the closure
A|E0 of its restriction A|E0 equals A. Then

l ¥ sa(A) iff inf{||(l−A) x|| : ||x||=1, x ¥ E0}=0.

For e > 0 let re(A) be the set {l ¥ r(A) : ||(l−A)−1|| < 1
e }. Then C0re(A)=

se(A) is called the e-pseudospectrum of A (see [5, 13, 14]; notice that the



e-pseudospectrum as defined here differs from that one in [5] which is the
open kernel of ours). The distance dist(K, L) from the bounded set K of
the Banach space F to the nonempty set L … F is defined by

dist(K, L)=sup
z ¥K

(inf
y ¥ L

||z−y||).

dist(K, L)=0 is obviously equivalent to K … L̄. So we can define dist(”, L)
=0 in a consistent manner.

It is well known that the mapping TQ s(T) from the set L(E) of all
bounded linear operators on E into the set of all compact subsets of C
equipped with the Hausdorff metric is not continuous. More precisely let
(Tn) be a sequence in L(E) converging to T ¥L(E) with respect to the
operator norm. Then limn dist(s(Tn), s(T))=0 but limn dist(s(T), s(Tn))
=0 does not hold in general (see [7, pp. 208–210]). However the following
assertion is true.

Proposition 1.1. Let (Tn) be a sequence of bounded linear operators on
the Banach space E which converges with respect to the operator norm to the
operator T. Then to every pair (e1, e2) of real numbers with 0 [ e1 < e2 there
exists n(e1, e2) ¥N such that se1 (T) … se2 (Tn) holds for all n \ n(e1, e2).

Proof. Let n(e1, e2) be such that ||T−Tn || < e2− e1 holds for all n \
n(e1, e2). Assume that l ¥ re2 (Tn) where n \ n(e1, e2) is fixed. Then

||(T−Tn)(l−Tn)−1|| [ ||T−Tn || ||(l−Tn)−1|| < (e2− e1)/e2=1− e1/e2.

Therefore the series ;.

k=0 [(l−Tn)
−1 (T−Tn)]k converges to (I−(l−Tn)−1

(T−Tn))−1. This in turn implies that

l−T=(l−Tn)(I−(l−Tn)−1 (T−Tn))

is invertible and moreover

||(l−T)−1|| [ ||(l−Tn)−1|| ||(I−(l−Tn)−1 (T−Tn))−1||

< ||(l−Tn)−1|| ·
1

1−(1− e1/e2)

[ 1/e1

hence l ¥ re1 (T). So re2 (Tn) … re1 (T) for all n \ n(e1, e2) which proves the
assertion. L

Remark 1.2. Harrabi [5] proved the following related theorem: If in
addition to the hypotheses of Proposition 1.1 the norm of the resolvent is
not constant on any open subset of the resolvent set then4n ¥N 1k \ n se(Tk)=
1n ¥N 4k \ n se(Tk)=se(T) holds for all e > 0.
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Our main aim is to show that the following assertion sa(T) …1n ¥N 4k \ n

se(Tk) which is slightly weaker than that one of Proposition 1.1 holds for
all e > 0 in a much more general situation. More precisely in the second
section we shall prove a somewhat stronger formula in the case of discrete
convergence which is motivated by numerical analysis and which we
explain now:

Let E1 be a dense linear subspace of the Banach space E, let (Fn) be a
sequence of Banach spaces and for each n let Pn : E1 Q Fn be a not neces-
sarily bounded linear mapping. If limn ||Pnx||n=||x|| holds for every x in E1
then (E, E1, (Fn), (Pn)) is called a discrete approximation scheme. A sequence
(xn)n ¥N ¥<n ¥N Fn converges discretely to x ¥ E1 if limnQ. ||xn−Pnx||n=0
holds. Then we write x=d− lim xn. Let now (A, D(A)) be a closed densely
defined linear operator on E and let E0 … E1 be a core of A such that
A(E0) … E1 holds. For each n let (An, D(An)) be a densely defined operator
on Fn such that Pn(E1) …D(An). We say that the sequence (An) approxi-
mates A discretely if for all x ¥ E0 the sequence (AnPnx)n converges discre-
tely to Ax, i. e. limn ||AnPnx−PnAx||n=0 holds for all x ¥ E0. Let us point
out that this notion is weaker than the corresponding notion in [11, p. 168;
15, Sect. 1–2]. The notion of discrete approximation of operators in the
literature which is closest to our one is to be found in [3, p. 368]. The main
difference is that in our case the Pn need not be continuous. In [3, p. 366],
however, there is also indicated how to overcome the restriction on Pn to be
continuous made there.

Examples. (1) Uniform convergence. Let X be a Banach space, set
E=E1=L(X), the Banach algebra of all bounded operators on X, set
Fn=E and Pn=I. For T ¥L(X) we consider the multiplication operator
A=MT : UW TU. Then the sequence (Tn) converges to T with respect to
the operator norm iff (An)=(MTn ) approximates A discretely as defined
above.

(2) Pointwise (strong) convergence. Here E=E1=Fn and Pn=I for
all n. A sequence (An) of bounded operators An converges strongly to A iff
(An) approximates A discretely.

(3) (Cf. [8].) Let E be a given Banach space and let (Fn) be an
increasing sequence of closed linear subspaces with F. :=1n Fn dense in E.
Moreover assume that each Fn is the range of a bounded projection Pn such
that supn(||Pn ||) <. as well as Pn+kPn=Pn for k \ 0. Let (A,D(A)) be a
closed densely defined operator on E such that for all n A|Fn=: An maps
D(A) 5 Fn=: D(An) into Fn and moreover that (An, D(An)) is densely
defined and closable on Fn and finally that D(A) 5 F. is a core of A. Then
setting E1=F., E0=D(A) 5 F. we obtain that the sequence (An) approx-
imates A discretely. A similar setting is used in [4] within the context of
approximation of ordinary differential operators on the real line.
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(4) Let E=L2([0, 1]), E1={f ¥ E : f continuous, f(0)=f(1)},
Fn=Cn with the scalar product (x | y)=1

n ;n
k=1 x̄k yk, Pnf=(f(1n),..., f(

n
n)),

E0={f ¥ E1 : fŒ ¥ E1}, and finally let Af=fŒ with boundary condition
f(0)=f(1). For Anx=n(x2−x1, ..., xn−xn−1, x1−xn) the sequence (An)
approximates A discretely.

(5) Same as (4) up to the An. Here we take Anx=n(x2−x1, ...,
xn−xn−1, 0).

(6) The spaces are the same as in (4). Af=fŒ−f with boundary
condition f(0)=f(1), Anx=n(x2−x1, ..., xn−xn−1, x1−xn)−x.

2. APPROXIMATION OF THE SPECTRUM FROM ABOVE

We adhere to the notations of the previous section. However we denote
the norm on Fn by || · || as usual.

In order to obtain the strongest possible results we have to refine the
notion of the e-pseudospectrum of an operator (A, D(A)) defined on the
Banach space E. For it turns out that the part s(A)0sa(A) cannot always
be approximated in the general case.

Set a(A) :=inf{||Ax||: x ¥D(A), ||x||=1}. Whenever E0 is a core of A
then a(A)=inf{||Ax||: x ¥ E0, ||x||=1} holds. Using this quantity we obtain
sa(A)={l ¥ C : a(l−A)=0}. So for 0 [ e we define the e-approximate
spectrum se, a by

se, a(A)={l ¥ C : a(l−A) [ e}

(cf. [9] where the strict inequality < e is used). In particular s0, a(A)=
sa(A) as well as se, a(A) … se(A) holds.

Lemma 2.1. se, a(A) is always closed.

Proof. Let l ¨ se, a(A). Then a(l−A)=: d > e. Now let m ¥ C satisfy
|l−m| < d− e. Then

a(m−A)=inf{||(m−A) x|| : ||x||=1, x ¥D(A)}

\ inf{| ||(l−A) x||− |l−m| ||x|| | : ||x||=1, x ¥D(A)} > e.

So the complement of se, a(A) is open. L

As for e=0 also for e > 0 it may happpen that se, a(A) ] se(A) holds as
the following example shows.

Example. Let E=a2(N) and let S be the right shift on E given by

(Sf)(k)=30 k=1
f(k−1) k \ 2.
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Since S is an isometry on E, it is easily checked that a(l−S) \ 1− |l|
holds for all l with 0 [ |l| [ 1. Moreover sa(S)={l ¥ C : |l|=1} and for
0 < e < 1 we obtain se(S)0se, a(S) ‡ {l: |l| < 1− e}, the latter set being a
subset of the residual spectrum sres(S)={l ¥ s(S) : a(l−S) > 0} of S.

The main result of this section is a generalization of [16, Theorem 2.2].
There we required A to be continuous. Moreover we assumed that the
operators Pn of the approximation scheme are continuous. Finally the
conclusion was somewhat weaker than that one of the following theorem.

Theorem 2.2. Let (E, E1, (Fn), (Pn)) be a fixed discrete approximation
scheme. Moreover, let the sequence (An) of densely defined linear operators
(An, D(An)) on the Banach space Fn approximate discretely the closed
densely defined linear operator (A, D(A)) on E. Then for every pair (e1, e2)
of real numbers with 0 [ e1 < e2

se1 , a(A) … lim inf
n
se2 , a(An)=0

.

n=1
3
k \ n
se2 , a(Ak)

holds.

Proof. For the sake of convenience we set e1=g, e2=e. Let l ¥ sg, a(A)
be arbitrary. Choose b > 0 such that e−g−2b > 0 and set c=1− g+2be . By
hypothesis there exists a core E0 of A with A(E0) … E1. Then there exists
x ¥ E0 of norm 1 such that ||(l−A) x|| < g+b/2. Again by hypothesis there
exists n0 such that for all n \ n0

| ||Pnx||− ||x|| | < c.

||PnAx−AnPnx|| < b.

||Pn(l−A) x|| < g+b.

Then for all n \ n0 we obtain

||lPnx−AnPnx|| [ ||lPnx−PnAx||+||PnAx−AnPnx||

=||Pn(l−A) x||+||PnAx−AnPnx|| < g+2b.

Now ||x||=1 implies 1− c < ||Pnx|| < 1+c. Dividing the inequalities above
by ||Pnx|| we get ||(l−An)(Pnx/||Pnx||)|| [ e which implies l ¥ se, a(An) for all
n \ n0. L
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In general sa(A) ¼ lim infn(sa(An)) as Example 5 of the introduction
shows. The following example is much easier but perhaps a little more
artificial.

Example. Let E=a2(N) and let T be the left shift given by (Tf)(k)=
f(k+1). Let

(Anf)(k)=3
f(k+1) k [ n−1
0 else.

Then (An) converges pointwise to T, but s(An)={0}. Nevertheless

{l: |l| [ 1}=sa(T)=s(T) … lim inf
n
se, a(An) for all e > 0.

In the special situation when ||(l−An)−1|| [M dist(l, s(An))−1 holds for
all n and a suitable M> 0 we obtain the following stronger result:

Theorem 2.3. Assume in addition to the hypotheses of Theorem 2.2 that
there exists M> 0 such that ||(l−An)−1|| [M dist(l, s(An))−1 holds for all
l ¥ r(An) and for all n. Then for every compact subset K … C

lim
nQ.

dist(sa(A) 5K, s(An))=0.

Proof. Assume that the assertion fails. Then there exists a d > 0, a
compact set K … C and a sequence (lnk ) in sa(A) 5K with dist(lnk , s(Ank ))
\ d > 0 for all k. Since K is compact there exists a subsequence (ln −k)
converging to a point z ¥ sa(A) 5K since sa(A) is closed. By applying
Theorem 2.2 with e1=0 and e2=e=

d
2(1+2M) we obtain n0 such that

z ¥ se(An) for all n \ n0. Moreover there exists k0 with |z−ln −k | < e for all
k \ k0. This implies z ¨ s(An −k

). But then M dist(z, s(An −k
))−1 \ ||(z−An −k

)−1||
\ 1
e yields M e \ dist(z, s(An −k

)). Hence there exists mn −k ¥ s(An −k
) with

|z−mn −k | < 2eM for all k \ k1 \ k0. This in turn implies

|ln −k−mn −k | [ |ln −k−z|+|z−mn −k | < (1+2M) e=d/2

for k \ k1, a contradiction to dist(ln −k, s(An −k
)) \ d. L

Here are some applications:

Examples (1) For S the right shift on E=a2(N) we have sa(S)=
{l: |l|=1} (cf. the example after Lemma 2.1). Set Fn=Cn and Pn : EQ Fn,
fQ (f(1), ..., f(n)). Let An(x)=(xn, x1, ..., xn−1). Then An is unitary
hence normal, and thus we can apply Theorem 2.3 with M=1 to obtain
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lim dist(sa(S), s(An))=0. However the residual spectrum s(S)0sa(S)
cannot be approximated by s(An).

(2) Let E, E1, Pn, Fn, A, and An be as in Example 4 of the Introduc-
tion. Then sa(A)=s(A)=2piZ and the approximating operators An are
normalwiths(An)={n(exp(2pik/n)−1) : 0 [ k [ n−1}.Weobtain2piZ …

lim infnse(An). Moreover lim dist(s(A) 5K, s(An))=0 as follows also
directly from 2pik=limnQ. n(exp(2pik/n)−1) for each fixed k.

(3) Let E, E1, Pn, Fn, A, and An be as in Example 5 of the Introduc-
tion. Then An=n(Nn−Qn) where Qn is the projection onto the first (n−1)
coordinates and Nn

n=0. Hence s(An)={−n, 0}. Theorem 2.3 does not
apply since there is no M satisfying the hypothesis of this theorem.
However 2piZ … lim inf se(An) as follows from Theorem 2.2. It can also
easily be deduced directly by verifying ||(2p ik−An) ek, n ||=O(n−1/2) where
ek, n=(exp(2p ikln ))l=1, ..., n for fixed k ¥ Z.

Remark 2.4. Let us point out that in special cases there are more
precise results even if the approximants are nonnormal operators. As an
example we give the following theorem due to Böttcher [2]: Let a be a
piecewise continuous symbol on the unit circle T and consider the approxi-
mation of the associated Toeplitz operator T(a) on a2(N) given by
(T(a)(x))n=;n

0 an−kxk where (an)n ¥ Z is the sequence of Fourier coefficients
of a. Let Tn be the nth section operator of T(a). Then for all e > 0

se(T(a))= lim
nQ.
se(Tn)

holds where the limit is taken with respect to the Hausdorff metric
dH(X, Y)=max(dist(X, Y), dist(Y, X)) on the space of all compact subsets
of C.

3. APPROXIMATION OF THE SPECTRUM FROM BELOW

In this section we turn to the problem of when

3
e > 0

3
n \ 1

0
k \ n
se, a(Ak) … sa(A)

holds where the sequence (An) approximates A as before. Let (rn)n be an
arbitrary sequence of positive real numbers converging to 0. Then

3
e > 0

3
n \ 1

0
k \ n
se, a(Ak)=3

n \ 1
0
k \ n
srn , a(Ak) (1)

is easily seen to hold. So in the following proofs we prefer the right-hand
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side description of this set because it contains only two set theoretical
operations.

In order to get our results we have to make use of the theory of
ultraproducts of Banach spaces (see [12] for details). Let G=(Gn)n be a
sequence of Banach spaces. Then a.(G) is the subspace of all norm
bounded sequences of the Cartesian product <n Gn. Equipped with the
norm ||(xn)|| :=sup{||xn ||: n ¥N} a.(G) is a Banach space. Now let U
be an arbitrary free ultrafilter on N. Then c0, U(G)={(xn)n ¥ a.(G) :
limU ||xn ||=0} is a closed subspace of a.(G). The quotient space is called
the ultraproduct GU of G with respect to U. If t=(xn)n is in a.(G) then

||t̂||=||t+c0, U(G)||=lim
U
||xn || holds.

Let U ¥U be arbitrary. Then t̂ is determined already by the subsequence
(xnŒ)nŒ ¥ U, a fact which we will use tacitely in the sequel.

Now let (Tn)n be a uniformly bounded sequence of operators Tn ¥L(Gn).
Then by T̃t=(Tnxn)n there is defined a bounded linear operator T̃ on
a.(G) for which c0, U(G) is an invariant subspace. The operator T̂ on the
quotient space GU is called the ultraproduct of (Tn) with respect to U. Let
U ¥U be arbitrary. Similarly to the fact in the previous paragraph T̂ does
not depend on indices not in U. In particular T̂ does not depend on the
first n0 operators. More generally if the sequence is only defined for n ¥ U
then we may fill up it with arbitrary bounded operators (Tn)n ¨U obtaining
always the same operator T̂.

Let (E, E1, (Fn), (Pn)) be a given approximation scheme. Let FU be the
ultraproduct of (Fn)n with respect to a given free ultrafilter U on N. Since
lim ||Pn y||=||y|| holds by hypothesis for all y ¥ E1 we obtain an isometry
VU : E1 QFU by VU(y)=5(Pn y)n. Since E1 is dense in E VU can be uniquely
extended to an equally denoted isometry on E.

Let the closed densely defined operator (A, D(A)) on E be discretely
approximated by the sequence (An)n of bounded linear operators An on Fn.
If this sequence is uniformly bounded then we obtain easily

ÂVU |E0=VU A|E0 .

Proposition 3.1. Let (E, E1, (Fn), (Pn)) be a given approximation
scheme. Let (A, D(A)) be discretely approximated by the sequence
((An, D(An)))n. Moreover assume that A as well as all An are surjective, and
that

lim inf
nQ.

a(An) > 0.
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Then there exists n0 ¥N such that for all n \ n0 An is bijective. Moreover A−1
n

is bounded, the sequence (A−1
n )n \ n0 is uniformly bounded, and A−1 exists and

is discretely approximated by (A−1
n )n \ n0 . Finally

VUA−1=5(A−1
n ) VU

holds for every free ultrafilter U on N.

Proof. There exists g > 0 and n0 ¥N such that a(An) \ g for all n \ n0.
Since all An are surjective, An is bijective for n \ n0 and ||A−1

n || [
1
g holds for

all these n.
Let U be a free ultrafilter on N. Then the operator B=5(A−1

n )n \ n0 is well
defined on FU and ||B|| [ 1

g . Assume now that there exists x0 ¥ E0, ||x0 ||=1
with ||Ax0 || < d=min(1, g)/2. By hypothesis the following assertions hold:

||VU(x0)||=1,

||VU(Ax0)||=||Ax0 || < d,

VU(Ax0)=(AnPnx0)
N
n .

But then ||(AnPnx0)
N
n ||=||VU(Ax0)|| < d. This in turn implies

||((AnPnx0)/||Pnx0 ||)
N
n || < 2d,

a contradiction to a(An) \ g \ 2d for all n \ n0. So a(A) \ d, since E0 is a
core of A. Since A is surjective, A−1 exists and is bounded with norm
[ 1/d. Moreover A(E0) is dense in E. For if y ¥ E is arbitrary then
(A−1y, y) is contained in the graph G(A) of A. But since E0 is a core
G(A)=G(A|E0 ) and the assertion follows.

Now let z ¥ A(E0) be arbitrary and set y=A−1z. Then VUz=VUAy=
(AnPn y)

N
n . This implies

BVUz=(A−1
n (AnPn y))

N
n =VUA−1z

for all z ¥ A(E0). Since this latter space is dense in E the final equality
follows from the continuity of B, VU and A−1.

Finally in order to prove that A−1 is discretely approximated by the
sequence (A−1

n )n we have to specify a core E2 … E1 of A−1 with A−1(E2) …
E1. But since A(E0) is dense it may serve as such a core. L

The following conditions on the approximation scheme (E, E1,
(Fn), (Pn)) are designed for applications to the approximation of operators
on infinite-dimensional manifolds (see the example following the next
theorem):

Assume that for every m < n there exists a linear isometric embedding
Sn, m from Fm into Fn. Moreover let the sequence ((An, D(An))) approximate
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the closed densely defined operator (A, D(A)). To every n let Gn be a core
of An and as before let E0 be a core of A with A(E0) … E1.

Theorem 3.2. In addition to the assumptions made in the previous para-
graph let the following condition be satisfied: For all k ¥N and for all z ¥ Gk
there exists y ¥ E0 and an unbounded sequence (tn) such that

Ptn y=Stn , kz for all tn

as well as

lim
nQ.

||AtnStn , kz−Stn , kAkz||=0.

Then

3
e > 0

3
n \ 1

0
k \ n
se, a(Ak) … sa(A).

Proof. We use Eq. (1) with rn=1/n. Assume that the assertion fails.
Then there exists l ¥4n ¥N 1k \ n srn , a(Ak) with a(l−A)=d > 0. By
hypothesis there exists a sequence (kn)n with kn \ n and a(l−Akn ) [ rn. To
each n there exists xkn ¥ Gkn of norm 1 such that ||(l−Akn ) xkn || [ 2rn.
Choose n0 such that rn < d/3 for all n \ n0. Fix n1 \ n0 and choose an
ultrafilter U with {tn : n ¥N} ¥U where (tn)n is the sequence for the
element z=xkn1 as required in the hypothesis. By assumption there exists
an element y in E0 with

Ptn y=Stn , kn1 (z) for all n ¥N.

Again by hypothesis

lim
nQ.

||Stn , kn1 (Akn1 (z))−Atn (Stn , kn1 (z))||=0

holds. Since Stn , kn1 (z)=Ptn y we obtain

5(Sn, kn1Akn1 z)=
5(AnSn, kn1 z)

=5(AnPn y)=VUAy.

Notice that we have tacitly made use of the fact that elements in the
ultraproduct do not depend on values xn, An, etc. for indices n not
contained in {tm : m ¥N}.

Because (E, E1, (Fn), (Pn)) is an approximation scheme we have

||VU y||=||y||=||Stn , kn1 z||=||z||=1.
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Since Sn, kn1 are isometries we obtain

2rn1 \ ||(l−Akn1 ) z||=||(lStn , kn1 z−Stn , kn1Akn1 ) z||

\ | ||lPtn y−AtnStn , kn1 z||− ||AtnStn , kn1 z−Stn , kn1Akn1 z|| | for all n.

This inequality yields

2rn1 \ ||lVU y−VUAy||=||VU(l−A) y|| \ a(l−A)=d > 3rn1 ,

a contradiction. L

Example (cf. [8] as well as Example (3) in Section 1). Let H be a sep-
arable, infinite dimensional Hilbert space over R with orthonormal basis
(en). Let E be the space of uniformly continuous complex valued bounded
functions on H equipped with the supremum norm. For each n let Qn

denote the orthogonal projection of H onto the span Hn of e1, ..., en and
set Fn={f ¥ E : f=f p Qn}. Then Pn : EQ Fn, fW f p Qn is a projection
of norm 1, and moreover Fn is isometrically isomorphic to the space of all
bounded uniformly continuous functions on Rn. So we identify these two
spaces. Then the isometry Sn, m whose existence is required in Theorem 3.2
is nothing else than the inclusion mapping.

Let (ln) be a positive summable sequence and set An=;n
k=1 lk(“

2/“x2k).
Then (An) approximates the infinite dimensional Laplacian ;.

k=1 lk
(“2/“x2k). In order to apply Theorem 3.2 we set D(An)=Gn, E0=1 D(An)
and E1=E. Moreover if z ¥ Gk then we take (tn)n=(n)n \ k and y=z. Then
all the assumptions made in Theorem 3.2 are satisfied. We show that

3
n

0
k \ n
s1/n, a(Ak)={l: R(l) [ 0}.

Our proof borrows an idea from the original proof of the main result of
[8] which however does not use the notion of e-pseudospectrum. To this
end let l ¥ C with R(l)=: c < 0 be arbitrary. Then the function

gm(x)=exp 1 l
2m

C
m

j=1

x2j
lj
2

is of norm 1 and a short calculation shows

(l−Am) gm(x)=−
l2

m2 gm(x) · C
m

j=1

x2j
lj
.

The inequality

t exp 1 c
2m

t2 [ 2m
− c e
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for all t \ 0 which is proved by elementary calculus shows

a(l−Am) [ ||(l−Am) gm || [
2 |l|2

|R(l)| em

which in turn proves that l ¥ s1/n, a(Am) for m > 2n |l|2/|R(l)| e. So
Theorem 3.2 implies

{l: R(l) < 0} … 3
n \ 1

0
k \ n
s1/n, a(Ak) … sa(A).

Finally we apply Theorem 2.2: An is known to be the generator of a
contraction semigroup. The Hille–Yosida Theorem (see [10, p. 8]) implies
||(l−An)−1|| [ (R(l))−1 for all l with R(l) > 0 independently of n. So
l ¥ re(An) for R(l) > e. Theorem 2.2 then implies sa(A) … {l: R(l) [ 0}.

Our final results are concerned with discretely compact approximation.
A sequence (xn) ¥< Fn is called discretely compact (or d-compact for
short) if for every e > 0 there exists a finite set Y(e) … E1 depending on e
such that

lim sup
n

dist(xn, Pn(Y(e))) < e.

Discretely compact sequences can be described as follows:

Lemma 3.3. Let (xn)n be a discretely compact sequence. Then to every
free ultrafilter U there exists y ¥ E such that VU y=5(xn)n.

Proof. Let U be a fixed free ultrafilter. By hypothesis to every r ¥N
there exists a finite set Y(r) in E1 depending on r such that lim supn
dist(xn, Pn(Y(r))) < 2−r. Since U is an ultrafilter and Y(r) is finite there
exists some yr ¥ Y(r) such that {n: ||xn−Pn yr || < 2−r} ¥U. This in turn
implies ||(xn)

N
n −VU yr || < 2

−r. Let p ¥N be arbitrary. Since VU is an isometry
we obtain that

||yr+p−yr || [ ||VU(yr+p)−5(xn)||+||5(xn)−VU(yr)|| < 2−r+1,

hence (yr) is a Cauchy sequence. If y=lim yr then obviouslyVU y=5(xn)n. L

Let (A, D(A)) be discretely approximated by the sequence ((An, D(An))).
We say that the approximation is discretely compact if (An) is uniformly
bounded and for every bounded sequence (xn) the sequence (Anxn) is
d-compact. For examples and for the connection to collectively compact
sequences in the sense of [1] see [11, Sect. 7.3]. (An) is called inverse
d-compact if the sequence (xn) is d-compact whenever (Anxn) is bounded.
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Lemma 3.4. Let (An) be inverse d-compact. Then lim infnQ. a(An) > 0.
If moreover A and all An are surjective, then there exists n0 ¥N such that all
An are bijective and the approximation of A−1 by (A−1

n )n \ n0 is discretely
compact.

Proof. If the assertion fails then to every k ¥N there exists nk \ k and
xnk with ||xnk ||=1 and ||Ankxnk || < 2

−k. Set

yn=3
0, n ¨ {nk : k ¥N}
2kxnk n=nk for some k ¥N.

Then (yn) is unbounded hence not d-compact though (An yn) is bounded.
Now let all An be surjective. By Proposition 3.1 there exists n0 such that

for all n \ n0 An is bijective. Moreover A−1
n is bounded and the sequence

(A−1
n )n \ n0 is uniformly bounded and approximates A−1 discretely. Finally

let (xn)n be bounded and set yn=A−1
n xn. Then (An(yn))n \ n0 is bounded

hence (yn)n is discretely compact by hypothesis. So the assertion follows. L

Let now T ¥L(E) with T(E) … E1 and let (Tn) be a uniformly bounded
sequence of operators Tn ¥L(Fn). Since E1 may serve as a core of T the
discrete approximation of T by (Tn) can be defined unambiguously. Recall
that we denote the set of eigenvalues of the operator T by sp(T).

Proposition 3.5. Let T, (Tn) be as above. Assume that (Tn) approxi-
mates T discretely and moreover that (Tn) is discretely compact. Then

3
e > 0

3
n \ 1

0
k \ n
se, a(Tk) … sp(T) 2 {0}.

Proof. Again we use Eq. (1) with rn=1/n. Let 0 ] l ¥4n ¥N 1k \ n

srn, a(Tk) be arbitrary. Then there exists a sequence (kn)n with kn \ n and
l ¥ srn , a(Tkn ). This in turn implies the existence of a normalized vector
xkn ¥ Fkn with ||(l−Tkn ) xkn || [ 2rn. Set xl=0 for l ¨ {kn : n ¥N}. Let U be
an ultrafilter containing {kn : n ¥N}. Then for t=(xn)n we obtain ||t̂||=1
as well as 0 ] lt̂=T̂t̂. Since by hypothesis the sequence (Tnxn)n is dis-
cretely compact by Lemma 3.3 there exists y ¥ E with T̂t̂=(Tnxn)

N
n =

VU y which in turn gives lt̂=VU y. Alltogether we obtain

lVU y=lT̂t̂=T̂(lt̂)=T̂VU y=VUTy

where the last equation holds since (Tn)n approximates T. Because VU is an
isometry this latter equation yields ly=Ty. L
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In most cases the spaces Fn are finite-dimensional so that sa(Tn)=sp(Tn)
holds in the following proposition.

Proposition 3.6. Under the assumptions of Proposition 3.5

lim
nQ.

dist(sa(Tn), sp(T) 2 {0})=0

holds.

Proof. Assume that the assertion does not hold. Then there exists d > 0
and a sequence (kn)n with kn \ n and moreover to every n a lkn ¥ sa(Tkn )
such that inf{|lkn − n|: n ¥ sp(T) 2 {0}} \ d. Since (Tn)n is uniformly
bounded (lkn ) is bounded. Set ll=0 for l ¨ {kn : n ¥N} and let U be a free
ultrafilter containing {kn : n ¥N}. Since (ln)n is bounded it converges along
U. Set m=limU ln. Then |m| \ d > 0. For every n we choose a normalized
vector xkn ¥ Fkn with ||(lkn −Tkn ) xkn || < 2

−n. We set xl=0 for l ¨ {kn : n ¥N}.
Let t=(xn)n. Then we obtain mt̂=T̂t̂. By Lemma 3.3 there exists y ¥ E
with T̂t̂=VU y. As in the proof of the preceding proposition we obtain
m ¥ sp(T), a contradiction to dist(lkn , sp(T) 2 {0}) \ d. L

Our main result is now an immediate consequence of this proposition:

Theorem 3.7. Let ((An, D(An)))n be an inverse d-compact sequence of
operators approximating discretely the closed densely defined operator
(A, D(A)) in E. Assume that A as well as all An are surjective and that
A(E0) … E1 is dense in E. Then for every compact set K ]” in C

lim
n

dist(sa(An) 5K, sp(A))=0.

Proof. By Lemma 3.4 the sequence (An) satisfies the hypotheses of
Proposition 3.1 and moreover the inverse operators A−1

n which exist from
some n0 on form a discretely compact approximation of A−1. Hence by
Proposition 3.6

lim
nQ.

dist(sa(A
−1
n ), sp(A

−1) 2 {0})=0 (2)

holds. By the spectral mapping theorem sa(An)={1l : l ¥ sa(A
−1
n )} and

sp(A)={1l : l ¥ sp(A
−1)}. If the assertion does not hold there exists a

sequence (lnk )k with lnk ¥ sa(Ank ) 5K and

dist(lnk , sp(A)) \ d > 0 (3)

for all k. Since K is compact w.l.o.g. we assume that (lnk )k converges to
some m ¥K. Because 1/|lnk | [ ||A

−1
nk || and this latter sequence is bounded
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m ] 0 holds. Since (1/lnk )k converges to 1/m it follows by Eq. (2) that
1/m ¥ sp(A−1) hence m ¥ sp(A), a contradiction to the inequality (3). L

Examples. (1) Obviously Theorem 2.3 as well as Theorem 3.7 applies
to Example (6) of the Introduction. So we get in this case

lim
nQ.

dist(sa(A) 5K, s(An))=0= lim
nQ.

dist(sa(An) 5K, sp(A)),

from which we deduce sa(A)=sp(A) as well as limnQ. (s(An) 5K)=
sp(A) 5K with respect to the Hausdorff metric on the set of compact
subsets of C.

(2) Let d > 0 be given and let E be the space of all continuous func-
tions on the compact interval [0, d] vanishing at 0. Let D(A) be the
subspace of all continuously differentiable functions in E, for which
fŒ(0)=0 holds and set Af=−fŒ. Let Fn=Cn be equipped with the maxi-
mumnormand setPn : EQ Fn, fW (f(d/n), f(2d/n), ..., f(nd/n)).Choose
An=

n
d (−I+Tn) with

Tnek=3
ek+1, k < n
0, k=n,

where {e1, ..., en} is the canonical basis of Fn. It is not hard to prove that
(An) is inverse d-compact, and s(An)=−n/d. Indeed in this example
Theorem 3.7 gives no information. We obtain s(A)=” immediately from
((l−A)−1 g)(x)=exp(−lx) >x0 exp(ls) g(s) ds (cf. also [14, Example 3]).
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